Что такое датчик холла

Принцип действия датчика скорости автомобиля

Назначение и принцип работы датчика Холла

Датчик Холла берет название от фамилии изобретателя, который в 1879 г открыл гальваномагнитное явление. Его суть заключается в возникновении разницы потенциалов при помещении проводника в магнитное поле, что вызывает поступление на него постоянного электрического тока. Датчик использует описанный выше эффект в условиях установленного под напряжением внутри прибора проводника, на который воздействует магнитное поле, пересекающее его поперек, и создает электродвижущую силу.

Принцип работы устройства основан на фиксации присутствия или отсутствия магнитного поля. При достижении силы индукции определенного значения, датчик показывает наличие поля. Если показатель ниже установленного значения, датчик указывает на его отсутствие. Чувствительность прибора определяется способностью фиксировать магнитное поле различной индуктивности, и может изменяться в зависимости от необходимых требований.

Автомобильный датчик Холла предназначен для измерения импульсов, на основании которых электроника блока управления зажиганием дает команду образования искры в необходимый для этого момент. Конструктивно прибор состоит из следующих частей:

  1. Постоянного магнита.
  2. Стального экрана с несколькими прорезанными отверстиями.
  3. Полупроводниковых пластин.

Из датчика выходит разъем, содержащий 3 клеммы:

  1. Первый выход соединяется с «массой».
  2. Второй предназначен для подключения напряжения 6 В.
  3. Третий подает преобразованный импульсный сигнал в коммутатор.

В большинстве случаев датчик располагают на трамблере. Он определяет момент подачи искры и используется вместо контактов. Существует цифровая модификация датчика, которая бывает биполярная и униполярная. Первый тип срабатывает при смене полярности, а второй при появлении поля.

Ремонт датчика Холла

Конструкция датчика Холла достаточно проста, и прибор редко выходит из строя. Но при его поломке автомобиль становится обездвиженным, и деталь требует срочной замены. Поскольку датчик достаточно дорогой, особенно для иномарок, имеет смысл попытаться самостоятельно его отремонтировать. Для примера можно взять прибор автомобиля Фольксваген, который устанавливают на различные модели машин данного автопроизводителя.

Самая ненадежная часть датчика – логический элемент S441А, представляющий собой чувствительную часть прибора, которая и выходит из строя. Целью ремонта является ее замена. Сама процедура состоит из следующих этапов:

  1. Покупка вышедшего из строя элемента или его аналога.

2. Проверка детали на работоспособность. С этой целью последовательно соединяют светодиод и резистор (1 или 2 кОм) и крепят к контактам «+» и «выход». Величина тока должна варьироваться от 3 до 30 В, а исправность элемента проверяется магнитом: при его воздействии срабатывает светодиод.

3. Дрелью и сверлом по металлу в центре датчика Холла проделывают отверстие, ножом «заподлицо» обрезают провода, надфилем прокладывают канавки от проделанного отверстия до выходов удаленных проводов.

4. Размещение активного элемента в проделанном окошке и проверка его на работоспособность. Так, при подключенных контактах и прохождении шторки через прорези, светодиод должен загораться, и при закрытии магнитного потока – гаснуть.

5. Если схема отказывается работать, элемент переворачивают и снова проводят проверку (полярность расположения имеет значение).

6. Если проверка прошла успешно, производят разводку выводов элемента в канавках корпуса. В самом окошке подпаивают провода, которые идут к соединительному разъему старого датчика

Обращают внимание на правильную последовательность проводов и их совпадение с маркировкой разъема трамблера («+», «0», «-»)

7. Завершив пайку, визуально и тестером проверяют отсутствие коротких замыканий в датчике. При успешной проверке заделывают технологическое отверстие термостойким клеем.

8. Датчик ставят на место и проверяют схему на предмет отсутствия коротких замыканий: никакой из проводов не должен звониться на корпус.

Аналогично восстанавливаются датчики многих автомобилей. Кроме Фольксваген, ремонту поддаются приборы на Daewoo, AUDI, Mitsubishi, и т. д., так как их принцип действия во всех случаях один и тот же.

Использование датчиков

Хотя я уже об этом говорил, здесь, так сказать, подведу промежуточный итог сказанного и расскажу о том, для чего используются датчики. И картина будет примерно такая:

  • Измерение:
    • Температура
    • Давление
    • Влажность
    • Вес (масса)
    • Уровень
    • Плотность
    • Освещённость
    • Скорость, ускорение
    • Расход
    • Перемещение
    • Электрические параметры (ток, напряжение, частота)
  • Определение:

    Положения (по вертикали, по горизонтали, по оси вращения)

  • Обнаружение:
    • Состояние: открыто/закрыто, включено/вЫключено и т.п.
    • Наличие (отсутствие) предмета, продукта (например, зерна в бункере или человека в опасной зоне)
  • Подсчёт:
    • Количества деталей (изделий)
    • Импульсов
  • Как заменить дорогой датчик и сэкономить 6000 рублей

Самостоятельная проверка устройства

Активное использование данного устройства в автомобилях означает, что при появлении определенных неисправностей или сбоев в работе ДВС может возникнуть острая необходимость проверить датчик Холла своими руками. Перед началом работ по отсоединению разъема кабеля, который подключен к устройству, следует обязательно выключать зажигание!

Игнорирование данного правила может вывести датчик Холла из строя. Необходимо добавить, что проверка устройства при помощи контрольной лампы также недопустима.

  1. Одним из самых быстрых способов проверки является установка заведомо исправного подменного датчика на автомобиль. Если признаки неисправности после установки исчезают, тогда причина очевидна.
  2. Вторым способом, который подойдет для проверки датчика в системе зажигания, является проверка наличия искры в момент включения зажигания. Дополнительно потребуется осуществить подсоединение концов провода к нужным выходам на коммутаторе.
  3. Для максимально точной диагностики устройство лучше всего поверять при помощи осциллографа. Также в определенных условиях датчик проверяют при помощи мультиметра. Указанный мультиметр переводят в режим вольтметра, после чего подсоединяют к выходному контакту на датчике. Рабочий датчик Холла выдаст показания от 0.4 Вольт до 3-х. Если показания ниже минимального порога, тогда высока вероятность выхода датчика из строя.

Если подобный прибор применяется в узле конструкции, то за ним нужно очень тщательно следить. Помните о частых и регулярных проверках, а также профилактических мероприятиях для схемы, которая ответственна за подключение.

При обслуживании старайтесь не испортить конструкцию устройства. Поэтому, чтобы не допустить его порчу, отсоединение прибора от питания должно производиться после выключения зажигания. Благодаря этому вы не допустите перепадов тока, соответственно, прибор не сломается. Неработающие агрегаты в большинстве случаев не ремонтируют, поскольку на практике ремонт совершенно бесполезен. Сломанное устройство просто утилизируют, а на его место ставят новое.

Ключевое преимущество датчиков Холла заключается в том, что при соблюдении допустимых рабочих значений тока и напряжении, его может хватить на огромное количество включений и выключений телефонов, смартфонов, ноутбуков и других приборов. В отличие от геркона, в приборе отсутствуют электромеханические контакты, которые быстро изнашиваются.

Итак, мы вкратце рассказали о том, что такое датчик Холла, по какому принципу он работает, и какую функцию он способен выполнять в автомобилях, а также мобильных телефонах и прочих видах цифровой техники.

Датчик Холла.

Принцип работы ДПДЗ с потенциометром

ДПДЗ посылает контроллеру информацию о работе на холостом ходу, замедлении, интенсивности ускорения и полностью открытом состоянии дроссельной заслонки (WOT).

ДПДЗ является трёхпроводным потенциометром. Первый провод подаёт напряжение + 5 В на резистивный слой датчика, второй провод — заземление. Третий провод подключен к бегунку потенциометра, благодаря чему изменяется сопротивление и, следовательно, напряжение сигнала, возвращаемого в ЭБУ.

На основании полученного напряжения блок управления может рассчитать холостой ход (ниже 0,7 В), полную нагрузку (около 4,5 В) и скорость открытия дроссельной заслонки.

При полной нагрузке ЭБУ обеспечивает обогащение топливной смеси. В режиме замедления (закрытая дроссельный заслонка и частота вращения двигателя выше определенных об / мин) контроллер отключает впрыск топлива. Подача топлива возобновляется после того, как частота вращения двигателя достигает своего значения холостого хода или когда дроссельная заслонка открывается. На некоторых автомобилях можно регулировать эти значения.

Замена ДПКВ

Если проведенная диагностика подтвердила неисправность цепи датчика положения коленчатого вала, лучше заменить его на новый. Сделать ремонт не получится, потому что корпус ДПКВ обычно неразборный. Приведем пошаговый алгоритм замены сенсора:

  1. Сбросить минусовую клемму с аккумулятора, чтобы прибор не закоротило во время монтажа.
  2. Отсоединить разъем проводки от ДПКВ и зафиксировать жгут, чтобы он не мешал работе.
  3. Отвернуть крепежный болт датчика торцовым ключом и вынуть неисправный сенсор из гнезда.
  4. Убедиться в чистоте посадочного места преобразователя в корпусе, отсутствии загрязнений на поверхности.
  5. Установить новый ДПКВ в гнездо, затянуть крепежный болт с нужным моментом динамометрическим ключом.
  6. Подсоединить разъем проводки к датчику до щелчка и зафиксировать на месте без люфта.
  7. Проверить, отрегулировать зазор между сенсором и маховиком в соответствии со спецификацией.
  8. Подключить аккумулятор и сбросить коды ошибок сканером. Завести мотор, убедиться в том, что код ошибки p0335 исчез.

Полная замена позволит устранить проблему, вызванную дефектом ДПКВ. Главное — выбрать оригинальную деталь или хороший заменитель. Если ничего не поменялось, надо «копать» в сторону газораспределительного механизма. Возможно проскальзывает ремень распредвала или подклинивает сам вал, нарушая синхронизацию с коленвалом.

Области применения датчиков

Не могу хотя бы вкратце не рассказать об этом. Потому что датчики сегодня применяются практически везде. Даже там, где вы, быть может, и не подозреваете.

Если сказать, что датчики применяются в системах автоматизации, то это значит не сказать ничего. Потому что сегодня практически любое устройство — от производственной линии до утюга, является системой автоматизации.

Поэтому я расскажу про области применения, имея ввиду отрасли промышленности или услуг. Итак, вы наверняка найдёте хоть какой-нибудь датчик:

  • В промышленном оборудовании
  • В бытовой технике и почти в любой технике для дома
  • В робототехнике
  • В автомобилестроении
  • В медицинской технике
  • В компьютерах
  • В разных любительских поделках

Датчик температуры охлажда ющей жидкости (ДТОЖ)

Его задача фиксировать температуру тосола или антифриза, и передавать эту информацию на ЭБУ. На основании принятой информации ЭБУ корректирует обогащенность топливовоздушной массы, попадающей в двигатель, соответственно, чем холоднее двигатель — тем боле е богатая будет эта самая смесь.

В целом ДТОЖ (рис. 6.) является термистором — то есть, чем ниже температура — тем выше сопротивление, и наоборот, чем выше температура — тем ниже сопротивление. Однако на ЭБУ датчик подает значение не сопротивления, а напряжения.

Рис. 6. Датчик температуры охлаждающей жидкости

Это реализовано системой управления датчиком. Так, например, если температура антифриза будет низкая, то выходное напряжение датчика будет большим, а по мере её прогревания напряжение датчика будет уменьшаться.

Устройство ДТОЖ достаточно простое, и почти никогда не выходит из строя. Однако в некоторых случаях (например, при механических повреждениях) может повредиться электрический контакт внутри датчика. Вторая возможная причина поломки — обрыв проводки от датчика до ЭБУ или повреждение ее изоляции. Как и в случае с другими датчиками, этот узел ремонту не подлежит, и его нужно только менять на новый.

ДТОЖ проверить можно как прямо на месте в двигателе, так и после его демонтажа.

Датчик антиблокировочной системы (ДАС)

На автомобилях, оборудованных АБС (антиблокировочной системой), на каждом колесе имеется по одному такому датчику (рис. 13). Их задача — фиксировать скорость вращения колес в определенный момент времени.

Место расположения в автомобиле может быть разный. Так же данный датчик имеет возможность работать на основе элементов Холла наиболее распространены вследствие своей простоты и надежности работы. Основанные на эффекте Холла — появлении поперечной разности потенциала в проводнике, помещенном в магнитное поле.

Рис. 13. Датчик антиблокировочной системы

В целом датчик антиблокировочной системы достаточно надежное устройство, и выходит из строя редко, чаще из-за механических повреждений, связанных с тем, что они установлены в непосредственной близости к коле су и дороге.

Если электронный блок управления считывает, что от датчика/датчиков приходит некорректная информация, то он активирует сигнальную лампу системы АБС на приборной панели и отключает ее в аварийном режиме. Что в частности приводит к увеличению небезопасного управления автомобилем.

ДАС можно проверить различными способами — путем измерения сопротивления, напряжения или с при помощи осциллографа. В некоторых системах предусмотрена установка двух датчиков — в системах высокого и низкого давления. Конструктивно датчик представляет собой сенсорный элемент, состоящий из металлической мембраны и тензорезисторов. Чем толще будет мембрана — тем на большее давление рассчитан датчик. Если значение давления выходит за заданные рамки (эти значения заложены в ПЗУ электронного блока управления), то в системе срабатывает регулирующий клапан в топливной рампе, и давление соответствующим образом корректируется.

В случае выхода датчика из строя ЭБУ активирует сигнальную лампу Check Engine на приборной панели, и начинает использовать стандартные (нерегулируемые) значения расхода топлива. Это приводит к работе двигателя в неоптимальном режиме, что выражается в перерасходе топли ва и потере мощности двигателя (динамических характеристик машины).

Назначение ДХ и принцип его функционирования

ДХ имеют много преимуществ, среди которых выделяются:

  • небольшие размеры;
  • прямоугольный формат электросигнала, что дает возможность мгновенно набирать конкретную константу без каких-либо скачков и всплесков.

Среди недостатков ДХ выделяют:

  • чрезмерная чувств-сть к помехам ЭЛМ полей, возникающих в цепочке питания;
  • более высокая стоимость ДХ относительно магнитоэлектрического устройства, обладающего при этом большей надежностью (с точки зрения теории).

В условном понимании ДХ можно разделить на 2 группы: линейные и логические. Другими словами, в одном из датчиков выход подразумевает линейность, в другом – логичность.

Схема зажигания БСК

Например, линейный датчик используется для вычисления незначительных сдвигов или для конструирования иных, менее упрощенных приборов. Кроме того, такой ДХ может быть использован, как сверхчувствительный компонент регулятора напряжения с химической основой.

Назначение логического датчика – вычисление наличия любых соединений с магнитными свойствами, что реализуется чувствительной областью ДХ.

Самое главное в применении ДХ – отлаженное и проверенное годами производство, ведь только таким образом обеспечивается полная и несомненная надежность изделия.

Датчики с магнитом – одни из самых распространенных приборов в автомобильной промышленности. Родившись в эру прогресса электро, они остались популярными до сих пор.

Взаимосвязь магнита и тока, выраженная тем, что трансформация импульса всегда связана с возникновением магнитного поля, привела к сегодняшним реалиям. Другими словами, контроль перемены силы тока в автомобильных системах зажигания регулируется с помощью ДХ.

ДХ – обязательный элемент современной бесконтактной системы зажигания. Кроме того, эти датчики нашли применение и в других автомобильных системах. Например, используются они в качестве счетчиков оборотов – тахометров, но обязательно в связке с постоянными магнитами.

Современный трамблер

ДХ состоят, как и говорилось выше, из пластины холла и магнита. Однако, это не аксиома, так как встречаются ДХ и без встроенного магнита.

Функционирование и назначение ДХ можно легко объяснить его составом. На прямоугольнике-полупроводнике, размером в несколько квадратных миллиметров или пленке, изготовленной из кристаллического материала имеются 4 электрода. Они предназначены для подвода тока и съема информации.

Принцип работы датчика холла

В целях исключения случайных механических сбоев, полупроводниковый материал крепится на прочной подложке, а пленка обрабатывается диэлектрическим веществом.

Чтобы обеспечить лучший эффект, толщина пластинки или пленки датчика делается как можно меньше.

ДХ применяются для бесконтактного контроля магнитной зоны. В некоторых случаях можно применять ДХ с вмонтированным ферритовым стержнем, что позволяет в разы увеличить КПД регулятора.

Еще один способ представить работу датчика холла, выглядит следующим образом.

  • В ДХ имеется постоянный магнит, образующий магнитную зону.
  • Пластина-полупроводник пересекает это самое поле, образуется преобразование – замыкание промежутка зубца, расположенного на распредвале.

Этот самый зуб называется репером (в геодезии – знак, метка).

  • Итак, это самая точка в момент соприкосновения образует токоимпульс, подающийся к ЭБУ.
  • Передаваемый импульс зависит полностью от амплитуды вращения распредвала. Это означает, что он поступает на различных временных промежутках.
  • Импульс, как и говорилось, идет на ЭБУ.
  • Последний раскодирует импульс, таким образом определяя положение ВМТ в 1-м цилиндре двигателя.
  • Только после этого идет разрешение на поступление горючего в камеру сгорания с ее последующим возгоранием.

Примечательно, что несколько иначе функционирует аналогичный датчик дизельного мотора. Топливо в данном случае более тяжелое, что и определяет разницу. Датчик холла дизеля больше нужен для контроля прохождений поршней ВМТ. Таким образом, с наибольшей точностью выставляется отношение валов между собой.

Методы диагностики

Для проверки исправности ДПКВ и его цепей при появлении ошибки можно использовать типовые методы диагностики. Сначала советуем осмотреть датчик. Механические повреждения будут видны невооруженным глазом. Легко заметить следы коррозии, загрязнений.

Проверка напряжения мультиметром

Если с «внешностью» все в порядке, пора переходить к другим методам. Надо проверить, поступает ли напряжение на контакты сенсора. Для этого можно использовать мультиметр в режиме вольтметра. Напряжение на контактах должно составлять 4–5 В. Если меньше, нужно искать обрыв проводки или короткое замыкание. Повышение вольтажа тоже не сулит ничего хорошего.

В нашей практике бывали ситуации, когда при нормальном питании сенсора сканер упорно выдавал на экране р0335. В этом случае не получится обойтись без тестирования обмотки на признаки разрыва. К выводам катушки нужно подключить мультиметр в режиме омметра. Нормальное сопротивление датчика составляет 600–700 Ом. При обрыве или коротком замыкании катушки показания будут стремиться к бесконечности.

Если с обмоткой все в порядке, надо прозвонить сигнальный провод, который передает данные в электронный блок управления. С этой задачей поможет справиться мультиметр в режиме прозвонки. Один щуп нужно приложить к началу сигнального провода, а второй — к месту соединения с ЭБУ. Если прибор показывает на экране цифру 1, значит где‐то есть обрыв.

Провод может оказаться целым. Тогда останется проверить контактные соединения. Нужно вытащить провода из «фишек», почистить концы мелкой наждачной бумагой. Если видны следы окисления, их тоже советуем зачистить. Надо проверять места подведения электричества к датчику и контактные площадки, соединяющие сигнальный провод с блоком управления машины.

В запущенных случаях поможет разве что осциллограф. Но вряд ли у каждого водителя есть в гараже «продвинутый» прибор. Поэтому проще заехать в ближайший автосервис, чем тратить весь выходной день на диагностику.

Активные и пассивные

Датчики ещё бывают активные и пассивные. Активные требуют подключения к источнику питания, пассивные — нет.

Что такое пассивный датчик

Пассивные датчик не требует подключения к источнику питания. Такие датчики изготавливаются из материалов, которые изменяют свои свойства под воздействием измеряемой среды, и могут эти изменения сразу преобразовать в пригодные для обработки системой сигналы.

Например, это термосопротивления. Обычно это просто медный проводник, который изменяет своё сопротивление в зависимости от температуры.

Зависимость сопротивления проводника от температуры достаточно проста:

R = p (l / S)

где R — сопротивление; р — удельное сопротивление материала; l — длина проводника; S — площадь поперечного сечения проводника.

График такой функции будет линейным, поэтому не потребуется каких-то дополнительных устройств преобразования сигнала. Соответственно, не потребуется и дополнительного питания. Вы такой датчик можете сделать даже сами из куска проволоки.

Другой пример — пример дискретного датчика — это геркон. Контакт геркона размыкается (или замыкается), если к нему поднести магнит. Никакого питания для такого датчика тоже не надо.

Что такое активный датчик

Активный датчик потребляет ток, и не будет работать без подключения к источнику питания.

Активные датчики нужны, например, когда входное значение слишком слабое и его надо усиливать. А усилитель, соответственно, требует питания.

Все микроконтроллеры требуют питания, поэтому все цифровые датчики являются активными.

Опять же стандартные токовые сигналы и сигналы напряжения как правило (хотя и не всегда) для их формирования требуют подключения к источнику питания.

Принципы работы датчиков

Выше я уже кратко рассказал о принципах работы датчиков (принципах действия). Здесь об этом чуть подробнее. Итак, по принципу действия датчики можно разделить на следующие группы:

  • Датчики (преобразователи) сопротивления. Принцип действия — изменение сопротивления в зависимости от значения измеряемой величины.
    • Потенциометры (переменные резисторы). Такие датчики наиболее часто используются для определения положения (например, положения рабочего стола фрезерного станка).
    • Тензорезисторы (тензодатчики). Обычно используются в весоизмерительном оборудовании.
    • Терморезисторы, термосопротивления. Используются для измерения температуры.
    • Фоторезисторы. Используются для измерения освещённости.
  • Датчики индуктивности и взаимной индуктивности. Принцип действия — изменение индуктивности при появлении металлического предмета в зоне чувствительности датчика. В большинстве случаев это дискретные датчики, которые используются для определения фиксированного положения металлических предметов. Либо для подсчёта металлических деталей, например, на конвейере. Индуктивные датчики способны обнаружить металлический предмет на небольшом расстоянии (обычно 1…2 см.).
  • Ёмкостные датчики. Принцип действия — изменение ёмкости при появлении предмета в зоне чувствительности датчика. Назначение то же, что и у индуктивных. Но, в отличие от индуктивных, реагируют не только на металлические предметы.
  • Магнитно индукционные. Наиболее часто используются для измерения частоты вращения.
  • Магнитные датчики. Принцип действия — изменение состояния в магнитном поле. Самый простой пример — геркон, который замыкает или размыкает контакт, когда рядом с ним расположен магнит. Многие датчики уровня работают по этому принципу.
  • Мембранные. Принцип действия — “прогибание” мембраны под воздействие давления (усилия). Обычно используются для определения уровня в бункере с сыпучими продуктами, иногда в реле давления.
  • Оптические. Принцип действия — изменение состояния при освещении. Обычно это также дискретные датчики, которые наиболее часто используются в барьерах защиты.
  • Кондуктометрические. Обычно используются для измерения уровней жидкостей. Принцип действия основан на токопроводности жидкостей.

И это ещё не всё…

Датчик массового расхода воздуха (ДМРВ)

ДМРВ (рис. 2) измеряет объемное количество всасываемого двигателем воздуха. Его устройство простое, поэтому выходит из строя достаточно редко. Однако в некоторых случаях может фиксировать и выдавать некорректную информацию.

Например, при завышении показаний от него на 10…20% возникают проблемы в работе двигателя, в частности, могут «плавать» холостые обороты, мотор «захлебывается» и плохо запускается. Если же значения показаний от датчика будут ниже, чем они есть на самом деле, то падают динамические характеристики машины, а также повышается расход топлива.

Рис. 2. Датчик массового расхода воздуха

Корректная работа датчика массового расхода воздуха очень зависит от состояния воздушного фильтра. Датчик может выдавать некорректные данные в том случае, если на автомобиле установлен фильтр нулевого сопротивления (а также в случае отсутствия воздушного фильтра).

Интересная особенность датчика массового расхода воздуха состоит в том, что автомобили, оборудованные им, нельзя тюнинговать, увеличивая мощность мотора. В частности, это касается двигателей ВАЗ, которые некоторые автолюбители «модифицируют» до значения мощности в 150…160 лошадиных сил. При этом датчик заведомо будет работать некорректно, поскольку попросту не рассчитан на такое количество проходящего в двигатель объема воздуха.

Для стандартных ВАЗ-овских двигателях датчик массового расхода воздуха на холостых оборотах должен фиксировать прохождение около 8…10 килограммов воздуха в час. При увеличении оборотов до значения 3000 об/мин соответствующее значение увеличивается до 28…32 кг/час. У двигателей, по объему похожих на ВАЗ-овские эти значения будут близкими или аналогичными.

Проверка датчика массового расхода воздуха заключается в измерении выдаваемого им постоянного напряжения с помощью электронного мультиметра.

Принцип действия

Понадобится пластина и элемент питания постоянного тока. Подключаем пластину к батарее. От плюса к минусу начинает протекать электрический ток, вызванный движением заряженных частиц. Из курса физики эти частицы, или по-другому электроны летят против движения тока. Теперь поднесем два магнита к пластине разными полюсами так, чтобы линии индукции проходили через ее сечение.

Возникает так называемая сила Лоренца, которая отклоняет летящие по пластине электроны в сторону. Из-за этого возникает разность потенциалов на краях пластины. Эта разность потенциалов, иначе говоря, напряжение будут меняться в зависимости от силы тока и магнитного поля. Такой эффект носит название человека, который его обнаружил в 1879 году. Им был Эдвин Холл.

На основе этого эффекта выпускается большое количество датчиков, позволяющих без физического разрыва провода измерять в нем как постоянный, так и переменный ток, поскольку при протекании тока в проводнике создается электромагнитное поле. Оно подобно тем магнитам, подносимым к пластине, изменяет выходное напряжение датчика Холла. Но возникает проблема того, что это поле при протекании не сильно больших токов само по себе очень мало. Для того, чтобы его увеличить, будем использовать ферритовое кольцо, которое имеет особые магнитные свойства и позволит увеличить необходимое нам электромагнитное поле до уровня для обнаружения протекания тока в проводнике.

Датчик Холла самодельный.

Сборка датчика тока на основе эффекта Холла

Подойдут кольца различных диаметров вплоть до 10 мм. Чем больше кольцо, тем чувствительнее получится датчик тока. Что касается датчика Холла, то его можно заказать со всем известного сайта. Стоит он недорого. Либо можно найти в нерабочих вентиляторах, ноутбуках и прочих устройствах, где он может использоваться. Датчики Холла Аналоговые и цифровые (Дискретные).

Что такое датчик Холла.

Дискретные работают по принципу транзисторов, то есть, при превышении какого-либо уровня магнитного поля датчик срабатывает. Аналоговый вид меняет свое выходное напряжение в зависимости от величины проходящего через него магнитного поля. Нам понадобится аналоговый датчик Холла. Если вы хотите не только детектировать протекание тока по проводнику, но также знать приблизительную величину этого тока.

Общие сведения о датчиках

Английское название датчика – “sensor” произошло от латинского слова “sensus” – ощущение, чувство, способность воспринимать “раздражение”. Эта способность является одним из наиболее универсальных свойств систем живой и неживой природы, которое позволяет реагировать на внешнее воздействие.

В настоящее время сенсорика – наука о датчиках – это целое системное направление, которое включает в себя явления, эффекты, процессы и алгоритмы из таких областей знаний, как физика, химия, биология, информатика, электротехника, теплотехника, электроника, оптика и других дисциплин.

Что такое датчик

Общее определение звучит примерно так:

Датчик – это устройство, воспринимающее сигналы и внешние воздействия и реагирующее на них.

Однако это очень широкое определение, под которое попадает практически любой чувствительный элемент — от человеческого уха до ручки дверного замка.

Если же говорить о системах, созданных человеком, а тем более не обо всех системах, а о системах автоматизации, то определение придётся немного сузить:

Датчик – это устройство, воспринимающее внешние воздействия и реагирующее на них изменением электрических сигналов.

Здесь внешним воздействием обычно является какая-то измеряемая характеристика объекта, его свойство или качество, которые необходимо воспринять и преобразовать в электрический сигнал.

В некоторых случаях вместо выражения “внешнее воздействие” применяется термин “измеряемая величина”.

Датчик (sensor) состоит из двух частей – чувствительного элемента (detector) и преобразователя (transducer), как показано на рисунке. Чувствительный элемент иногда называют измерительной головкой (sensor head).


Результат работы датчика – это реакция чувствительного элемента на внешнее воздействие, которая на выходе преобразователя представляет собой электрический сигнал, пригодный для распознавания и обработки системой.

Зачем нужны датчики

Назначение датчиков – отслеживание и реагирование на внешнее воздействие и преобразование его в электрический сигнал, совместимый с измерительными схемами. По сути датчик – это преобразователь физической величины в электрический сигнал.

Или, переходя в мир людей, можно сказать, что датчики — это глаза, нос и уши АСУ. Но, кроме этого, и в отличие от человека, АСУ требуется намного больше данных для работы, и эти данные должны быть намного точнее.

Например, человеку не так важно знать точное значение температуры. Он обходится значениями “тепло” и “холодно”

А для выполнения технологических процессов, конечно, такой точности недостаточно. Поэтому системе нужны датчики, которые измеряют температуру с точностью до градуса, а иногда и до десятой или даже сотой доли градуса.

Датчики электрических величин

Все датчики можно разделить на две большие группы:

  • Датчики электрических величин
  • Датчики неэлектрических величин

Датчики электрических величин измеряют и преобразуют, как ясно из названия, электрические величины. Такие как ток, напряжение, сопротивление, частота. Такие датчики достаточно широко используются в системах автоматизации.

Датчики неэлектрических величин

Все остальные датчики, то есть те, которые измеряют характеристики, не связанные с электричеством, можно причислить к этой группе.

Их иногда называют датчиками физических величин. Хотя это не совсем правильно, потому что электрические характеристики — это тоже физические величины.

Неэлектрические величины — это огромное разнообразие всех возможных свойств различных объектов. Например, вес, температура, давление, плотность, скорость, частота (но уже не частота переменного тока, а, например, частота вращения), яркость (освещённость), влажность, загазованность и т.п.

Что такое измерительные преобразователи

Можно сказать, что “измерительный преобразователь” — это другое название датчиков. Хотя это и не совсем так.

Как видно из рисунка выше, любой датчик выполняет ПРЕОБРАЗОВАНИЕ. Но не любой датчик выполняет ИЗМЕРЕНИЕ. Поэтому любой датчик является преобразователем, но не каждый преобразователь является измерительным.

Таким образом, измерительные преобразователи — это датчики, которые что-то измеряют. Например, напряжение, вес, температуру.

Остальные же датчики, которые ничего не измеряют, не являются измерительными. Например, датчик открытия двери ничего не измеряет. Он просто фиксирует положение двери — открыта или закрыта.

Понравилась статья? Поделиться с друзьями:
Avto Expert
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: